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Abstract

The proliferation of methods to constrain and identify Structural Vector Autore-

gressions (SVARs) has improved the precision of inference for this type of model. Some

papers propose the `kitchen sink'-approach to identi�cation, and without a clear mea-

sure of accuracy to suggest otherwise, they produce set-identi�ed SVARs using a broad

mixture of restrictions. Considered together, such restrictions may be at best com-

plementary or at worst contradictory. To help clean house, we propose in this paper

two measures of conditional forecast accuracy for unobserved structural shocks. In a

series of simulations, we show that these measures can be used to optimize a model's

restrictions and bring it closer to the true data generating process. We then apply the

measures to several well known SVARs for the oil market and argue that the often-

imposed upper bound restriction on the price elasticity of oil supply should be relaxed

by around half.

1 Introduction

The real oil price is a key variable for the model-based macroeconomic projections of govern-

ments and professional forecasters. The framework of reduced-form Vector Autoregressions

(VARs) can generate unconditional oil price forecasts with lower Mean Squared Prediction

Error (MSPE) and improved directional accuracy over the no-change forecast. When cou-

pled with a set of identifying restrictions, a key feature of the VAR is that it can generate

structural interpretations of the oil price and other macroeconomic aggregates. The en-

hanced Structural-VAR (SVAR) brings a host of powerful interpretative tools for generating

hypothetical scenarios and sorting through past historical events, but it also brings potential

for the pitfalls of mis-identifcation and bias. In forecasting hypothetical scenarios, for in-

stance, the possible outcomes can vary widely by identi�cation scheme. This leaves applied

economists wanting for a metric of out-of-sample forecast accuracy analogous to MSPE for

unconditional forecasts. While there is sigin�cant progress in that direction (e.g Clark and
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McCracken (2014), Antolin-Diaz, Petrella, and Rubio-Ramírez (2021)), to our knowledge,

there are no measures for forecast accuracy conditional on unobserved structural shocks.

This paper develops two measures to address this gap in the literature. The results

here, we hope, can guide SVAR selection and help �ne-tune some categories of identifying

restrictions. In a series of simulations, we show how both measures move us closer to the

true parameters of the underlying data process. Minimizing the values of our measures

will also minimize the distance between the model's �tted parameters and the true ones

driving the data. Importantly, this will also minimize the squared distance between the

model's structural shocks and the true ones. We then apply our new measures to �ve well

known SVARs in the oil market literature, each with a unique and robust set of identifying

assumptions. The papers we study are: Kilian (2009), Kilian and Murphy (2012), Baumeister

and Hamilton (2019), Antolín-Díaz and Rubio-Ramírez (2018), Kilian and Murphy (2014).

But our results are applicable even more broadly. The last section of this paper focuses on

the framework in Antolín-Díaz and Rubio-Ramírez (2018), where we apply our measures to

optimize over the bounds on the price elasticity of oil supply and show that the optimal

bound implied coincides almost exactly with recent microeconomic estimates from North

Dakota (see Bjørnland, Nordvik, and Rohrer (2021),Zhou (2020)).

Our �rst task is to carefully de�ne the target against which we can measure the SVAR's

results. This is a delicate question that some authors have touched on (e.g. Lucas (1980) and

McCloskey (1998)) and we should carefully de�ne the intended scope of this paper before

going too far into the details. While the reduced-form VAR can generate forecasts for a

world that is measurable against observed data, the structural model's key feature is that

it gives us insights into a world that is not observed. That is, it provides insights into a

world that is consistent with a theoretical framework that lives in the mind of the researcher.

Our goal here is not to measure the `realism' of any particular theoretical model imposed

in an SVAR. Rather, our goal is to derive a measure for the relative ability of any set of

restrictions to bring an SVAR closer to the researcher's ideal theoretical model, given that

they have already chosen one.

We use the `narrative' framework in Antolín-Díaz and Rubio-Ramírez (2018) to de�ne a

set of restrictions on the relative magnitudes and signs of historical structural shocks implied

by an SVAR's impulse response functions. This approach, known as narrative restrictions,

makes use of our consensus narrative understanding of events to build a set of identifying

restrictions on a model's structural shocks. In this paper, we build our own set of nine

narrative restrictions around three major global events. We can then measure how much

of a `surprise' our set of restrictions generates for the likelihood functions of the �ve oil

market-SVAR baseline models mentioned above. If the amount of surprise is large, that is,
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if the restrictions are highly unlikely to be consistent with the SVAR's likelihood function,

then the baseline model is performing poorly by our measures. Alternatively, if a baseline

model's likelihood function regards the restrictions as highly likely, the model is performing

well.

Our measures attempt to quantify this `surprise'. We use the Kullback-Leibler (KL)

estimate of divergence for our headline results, and we show how it is related to a simple

expected value of a conditional forecast satisfying the restriction set. Zhou (2011) also

considers the usefulness of KL divergence for Bayesian models, but their work is limited to

considering unconditional forecasts. Antolin-Diaz et al. (2021) uses KL as a measure for the

likelihood of an event, but never suggests using it in the reverse as we do here, i.e. using an

event to inform us about the likelihood of a model.

Upon developing the measures and algorithms to compute them, we show in a series of

simulations that as a baseline model is increasingly restricted, the structural shocks move

closer to representing the true unobserved shocks driving the data. We vary the upper bound

on the price elasticity of oil supply over a broad range to see if our measures can be used to

glean information about the true elasticity of oil supply underlying the simulated data. We

then plug in the optimal upper bound into the baseline model and, when the optimal upper

bound is imposed, the model correctly estimates the mean of the elasticity for the under-

lying data process. There are two main takeaways from this simulation. First, restrictions

generally help the baseline model move closer to the target model with restrictions. Second,

for each baseline model, we can �nd a set of parameters that minimizes our measures, and

that optimal set will also center the baselines' posterior distribution over the true DGP's

parameters.

In this paper's empirical application, increasing the elasticity bound to 80% above a com-

monly used threshold of 0.0258 reveals that the model of Antolín-Díaz and Rubio-Ramírez

(2018) performs 20% better. Remarkably, Zhou (2020) also concludes that the one-month

elasticity for oil supply should be increased to our prescribed level, but they use very di�er-

ent information to arrive there. Citing data from oil producers in North Dakota (Bjørnland

et al. (2021)), Zhou (2020) shows that the largest credible micro-econometric estimate us-

ing reduced form regressions for this elasticity is 0.04, which aligns almost exactly with our

optimal bound.

We then perform an informal experiment to test how di�erent the Antolín-Díaz and

Rubio-Ramírez (2018) model is under 0.04 versus 0.0258. We run a hypothetical scenario:

what happens if we have another Covid19 outbreak like we did in February and March of

2020? We use the approach in Baumeister and Kilian (2014) and pull the aggregate demand

shock from those months of 2020, and apply it to an unconditional forecast of the oil price
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going forward 18 months. The results of the scenario's impact on the level of the oil price

are modest. With our optimized model, the scenario predicts an extra �ve point drop in the

oil price relative to the baseline. These results are not dramatic, but they seem reasonable.

This paper proceeds with a description of the theoretical framework and revisits the

identi�cation problem for SVARS in Section 2. Section 3 prepares the de�nition for the

restriction sets, and Section 4 employs these sets to arrive at our �rst measure for forecast

accuracy conditional on unobserved shocks. Section 5 builds on this progress to develop a

second measure, and Section 6 tests both measures' e�ectiveness in a laboratory environment.

Section 7 is the main empirical application to the oil market and Section 8 concludes.

2 Framework

We consider Structural Vector Autoregressive (SVAR) models that have the form,

y′tA0 =

p∑
l=1

y′t−lAl + c+ ε′t for 1 ≤ t ≤ T , (1)

where yt is a n×1 vector of variables in the regression. The n×n matrix A0 are the structural

paramaters that describes the contemporaneous relationships between the variables in yt.

Unexpected structural shocks, εt, hit the system each period as an n × 1 vector, and the

matrix Al is an n × n matrix of parameters for 0 ≤ l ≤ p governing the role of lagged

information, and p is the number of lags. The vector c is a 1× n set of constant parameters

and T is the sample size. Structural shocks, conditional on past information, are Gaussian

with mean zero and covariance matrix E (εtε
′
t) = In, where In is the n× n identity matrix.

Stacking the lagged yt and Al matrices, this model can be written in a tractable way,

y′tA0 = x′tA+ + ε′t for 1 ≤ t ≤ T (2)

where m = np+ 1, and A′+ =
[
A′1, . . . , A

′
p, c
′] has dimensions m× n. Lagged information is

stacked into x′t =
[
y′t−1, . . . , y

′
t−p, 1

]
. Conditional on lagged data, the expected value of the

structural shocks is E(εt| {yt−1}t−j,j>0) = 0.

The system in Equation (2) is de�ned in terms of the structural parameters θ = (A0, A+),

however in many practical applications, only the reduced form parameters (B,Σ) in Equation

(3) below can be directly estimated. There is a clear relationship between the structural

parameters and reduced form ones, since B = A+A
−1
0 and the u′t = ε′tA

−1
0 . Therefore

Σ = E (utu
′
t) = (A0A

′
0)−1 is the covariance matrix of the reduced form model errors. The
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conditional expectation of the reduced form errors is E(ut| {yt−1}t−j,j>0) = 0.

y′t = x′tB + u′t for 1 ≤ t ≤ T (3)

The mapping between the reduced form parameters and the structural ones is not unique.

This gives way to a well known identi�cation problem for SVARs, and to resolve it, some sort

of extra identifying restrictions should be imposed to estimate A0. The issue arises because

there are too many free variables in θ. With n (n+ 1) /2 distinct values in Σ, but n2 in

A0, there are at least n (n− 1) /2 degrees of freedom. Adding restrictions to the acceptable

values of A0 has been fruitful for much of the literature on this topic and there are now

many well-researched paths to identi�cation (e.g. Alquist, Kilian, and Vigfusson (2011),

Antolin-Diaz et al. (2021)).

Some identi�cation methods are especially common for oil market SVARS. For example,

Sims et al. (1986) assumes that A0 is a Cholesky factor of Σ, thereby forcing the unidenti�ed

parameters of A0 to be zero. Another common approach is to put sign restrictions on the

entries of A−1
0 following Uhlig (2005) and Rubio-Ramirez, Waggoner, and Zha (2010). This

method has proliferated widely and we include a brief description of the procedure in the

Appendix. Yet another popular strategy is to impose restrictions on the relative magnitudes

and signs of the structural shocks implied by the historical decompositions following Antolín-

Díaz and Rubio-Ramírez (2018).

3 Measuring the Success of an SVAR

This paper's �rst step to measuring an SVAR's success at generating realistic insights is

to carefully de�ne the target against which we can measure the SVAR's results. As we

mentioned in the Introduction, while the reduced-form VAR in Equation (3) can create fore-

casts for a world that can be measured and compared against observed data, the structural

model's key feature is that it gives us insights into what is not observed. That is, it pro-

vides insights into a world that is consistent with a theoretical framework that lives in the

mind of the researcher. Our goal here is not to measure the `quality' or the `realism' of any

particular theoretical model imposed in an SVAR. Rather, our goal is to derive a measure

for the relative ability of any set of restrictions to bring an SVAR closer to the researcher's

ideal theoretical model, given that they have already chosen one.

If there is a restriction that is known to be true of the world and consistent with the

theoretical model in mind, then surely it should be used to improve the structural model.

This is consistent with Uhlig (2017)'s forceful �rst principle of sign-restricted SVARs: if you
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know it, impose it. Unfortunately this is almost never the case, since adding restrictions to

a model can add signi�cant technical complexity. The reverse is much more often the case,

where the researcher is required to impose things they are not sure about so that the model

is tractable. In this paper, we point to some identifying information that can be directly

imposed on the model without adding complexity, and we suggest a method for making use

of some of it in a tractable way.

A narrative accounting of events through time is sometimes the �rst information that is

accessible to researchers. Antolín-Díaz and Rubio-Ramírez (2018) makes use of this narrative

information explicitly to develop a method for identifying model parameters by restricting

an SVARs structural shocks to align with our narrative understanding of events. This seems

like a rich source of information, since after all, there are many examples where economic

theory was derived from a narrative accounting of historical events1, it seems appropriate

to return there to �nd empirical identifying restrictions. We will now �x some ideas and

de�ne a simple function that is the starting point for narrative restrictions. We start by

re-arranging Equation (2) so that it is a function of the data and structural parameters

εt = y′tA0 − x′tA+. (4)

We can use this to de�ne a function g(.) so that,

εt = g(yt;xt, θ) (5)

and for any draw of θ, the function g(.) is invertible.

yt = g−1(εt;xt, θ) (6)

Suppose we have a narrative accounting of event i that continues for hi periods, then the

structural shocks around that event are εi = εisi , ..., ε
i
si+hi

. The event i is part of the broader

set of narrative events v, so that i ∈ v, and the full set of structural shocks on which we feel

comfortable putting restrictions is εv. Following Antolín-Díaz and Rubio-Ramírez (2018),

we set restrictions on the signs of the structural shocks and the relative contribution of

structural shocks as measured the historical decomposition.

Using their framework, we can apply three general types of restrictions:

• Type 1: Shock-sign, e.g. Shock h in time t is negative (positive).

• Type 2: Contribution, e.g. the contribution of shock h in time t is greater (less)

1In a well known example, Keynes (1939) derives a theory of liquidity and investment from his personal
observations throughout the unfolding of the Great Depression.
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than any other shock to shifts in variable k that period.

• Type 3: Sum Contribution, e.g. The contribution of shock h in time t is greater

(less) than then sum of absolute values of all other shock-contributions that period for

variable k that period.

All the restrictions can be stacked together for all the events in our target set v and this

de�nes the vector φ(.). When all the restrictions of φ(.) are met, then every element of the

vector is greater than 0. Another way to say this is,

φ
(
θ, εi

)
> 0qx1 (7)

where q is the number of restrictions. Notice that φ(.) is also a function of the structural

parameters, because historical decompositions are functions of both structural shocks and

the model's structural parameters. Equation (7) can now be written using (5) to express

the function φ(.) in terms of the observed data. This ensures the function is continuous

with respect to θ and aids in the numerical integration performed later in this paper. The

indicator function Φ(.) below in Equation (8) takes the value of 1 if the constraints are met

on all restricted shocks εv and will be 0 otherwise.

Φ (θ, yv, xv) = 1 [φ (θ, g(yv;xv, θ)) > 0qx1] (8)

4 A First Measure: Simple Average

A reasonable �rst question about the baseline set of model parameters θ is: how likely is it

that the model will generate structural shocks consistent with all the restrictions in φ(.)? The

answer is not de�nitive about the quality or accuracy of the baseline model, but the answer

may be informative nonetheless. This section of the paper will formalize the question and

show how to calculate the answer. In later sections, the answer to this question turns out to

be a component of the Kullback-Leibler divergence measure discussed in Section 5.

We are then looking for the expected value of the function Φ(.) over the posterior distri-

bution of parameters θ|yT for our baseline model. Letting π(.) be a probability distribution

function, we can write this expected value as,

Eθ|yT [Φ (θ, yν , xν)] =

∫
π
(
Φ(θ, yν , xν) = 1|yT , θ

)
π
(
θ|yT

)
dθ

The Success Rate, S̄θ|yT , is de�ned as the expected value that the shocks fails to violate the
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set of restrictions in φ(.) for any draw of θ|yT given that data yT has been observed.

S̄θ|yT = Eθ|yT
[
φ
(
θ, yT

)]
A key feature of S̄θ|yT is that it is easy to calculate. The measure can be approximated by

a simple sum of the draws of θ that satisfy the restrictions divided by the total number of

draws. Provided that the total number of draws N is su�cient to approximate the limiting

distribution then the algorithm for deriving this measure is,

Algorithm 1. The following algorithm makes independent draws from the posterior of θ

to calculate S̄θ|yT using the narrative restrictions in φ(.).

1. Take N draws from the posterior distribution of the baseline model's parameters, θ|yT .

2. Combine each draw with the observed data yT to calculate Φ(xv, yv, θ).

3. Sum the values for Φ(xv, yv, θ) over all the draws, and divide by the total number of

draws, N , to �nd S̄θ|yT .

5 A Second Measure: Kullback-Leibler

This paper has so far de�ned a set of narrative restrictions φ(.) that the researcher is sure

are correct, and they are willing to impose on the baseline model. This section de�nes a

measurement for the `surprise' this set of restrictions generates for the likelihood function of

the baseline model. If the amount of surprise is large, that is, if the restrictions are highly

unlikely to be consistent with the baseline model, then the baseline needs improvement or

should be avoided.

This `surprise' can be calculated directly from the distance between likelihood functions

with and without the restrictions imposed, i.e. π
(
yT |θ

)
and π

(
yT |θ,Φ(θ, yν , xν)

)
. For this

section, distance is measured in informational units or 'bits' that is similar to euclidean

distance. If the distance from the baseline model is larger than what an alternative model

yields, then the baseline model is farther away from agreeing with the restrictions. Further-

more, if satisfying the restrictions is a necessary condition for having the correct model, then

the alternative model should be clearly preferred over the baseline. There is no distance

too large or small in absolute terms that we recommend in this section, rather, the relevant

criteria we suggest is that the preferred model is closer to meeting the restrictions in φ(.).

One way to measure this distance is to calculate the Bayes' factor, which is the total

probability of observing the data yT under the narrative restrictions versus observing the
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data without the restrictions, i.e. Bayes Factor = π
(
yT |Φ(θ, yν , xν)

)
/π(yT ). This ratio

can be rewritten as π
(
Φ(θ, yν , xν)|yT

)
/π(Φ(θ, yν , xν)). Notice that the numerator of this

factor corresponds with the measure S̄ derived in Section 4, but the denominator is the

total unconditional probability of meeting the restrictions, and is not as easy to calculate

as the measure proposed now, the the Kullback-Leibler divergence that is de�ned as the

informational di�erence between the generic distributions, g and h.

DKL =

∫
g
(
eT
)

log

(
g(εT )

h(z)

)
dz (9)

Applying this to our probability functions, π
(
εT |xT , θ,Φ (θ, yv, xv)

)
and π

(
εT |xT , θ

)
, for

some variable vector of structural shocks εT is,

DKL =

∫
π
(
εT |xT , θ,Φ (θ, yv, xv) = 1

)
log

(
π
(
εT |xT , θ,Φ (θ, yv, xv) = 1

)
π (εT |xT , θ)

)
dεT (10)

The fraction inside the log function can be simpli�ed considerably. Employing Bayes-theorem

and re-arranging terms allows us to re-write this as the ratio of likelihoods for satisfying the

restrictions given information on the existing shocks, versus without this information.

π
(
εT |xT , θ,Φ (θ, yv, xv) = 1

)
π (εT |xT , θ)

=
π
(
Φ (θ, εv) = 1|εT , xT , θ

)
π (Φ (θ, εv) = 1|xT , θ)

(11)

The denominator in (11) can be written as below, and it will be is invariant with respect to

the distribution of shocks, so we can move it outside the integral for DKL.

π
(
Φ (θ, yv, xv) = 1|xT , θ

)
=

∫
π
(
εv,Φ (θ, εv) = 1|xT , θ

)
π
(
εT
)
dεT (12)

= ω
(
θ, yT

)
(13)

Using Equations (12) and (11), we can re-write our measure for the case when ω (.) > 0,

DKL =

∫
π
(
εT |xT , θ,Φ (θ, yv, xv) = 1

)
log

(
π
(
Φ (θ, εv) = 1|εT , xT , θ

)
ω (θ, yT )

)
dεT (14)

Notice that, given lagged values xT and the stuctural shocks εT , the function Φ(.) is 1 with

probability 1. If the structural shocks do not satisfy Φ(.), then the distribution used to inte-

grate will take on zero mass, i.e. π
(
εT |xT , θ,Φ (θ, yv, xv) = 1

)
= 0. Since limz→0 z log (z) = 0,

the integrand takes the value of 0 at that point. Also note that structural shocks in period

t are independent from lagged values of the data, xT and have been normalized to be in-
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dependent of the parameter draw θ. Therefore we can use these insights to simplify DKL

considerably,

DKL = log

(
1

ω (θ, yT )

)
(15)

This measure still varies for each draw of θ, so to arrive at a �nal summary measure that we

can report and compare between baseline models, one more integration is performed across

all the parameter draws to compute its expected value,

D̄KL = Eθ|yT
[
DKL

(
θ, yT

)]
=

1

Sθ|yT

∫
θ∈Θ

log

(
1

ω (θ, yT )

)
π
(
θ|yT

)
dθ (16)

where the set Θ = {θ|Φ (xv, yv, θ) = 1}.

Algorithm 2 The following algorithm makes independent draws of εT from the standard

normal distribution and from the posterior of θ to calculate DKL.

1. Take N draws from the posterior distribution of θ|yT .

2. Check the constraints in Φ(.) for each of the N -draws and save those that pass the

restrictions. Count the number that pass, P .

3. Then for each of the saved draws i:

• Draw M new shock series for T periods, ε̃T , from the unconditional distribution

for structural shocks, which in this case is Standard Normal N (0, I).

• For each M -draw, use ε̃T together with θ to check the constraints, and count the

number of successes, Si.

• Calculate and save the measure Si/M ≈ ω
(
θ, yT

)
4. Calculate N

P

∑P
1 −log(Si/M) ≈ Eθ|yT

[
DKL

(
θ, yT

)]
6 Simulation of the Measures

To arrive at an upper bound on the usefullness of our measures S̄ and D̄KL, in this section

we estimate a series of SVARs using calibrated simulated data. Unlike real data, of course,

the parameters for this simulated data are known. Having calibrated the data generating

process and produced the simulated data, we re-estimated an innocent SVAR and calculate
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our measures S̄ and D̄KL using a two simple narrative restrictions. We impose shocks in

the simulate data for one time period only�the period of the narrative test. The shocks we

impose have two characteristics (1) there is a negative one standard deviation shocks to oil

supply and (2) the shock to demand has a larger total contribution to the oil price. We then

de�ne the narrative restrictions to re�ect these known characteristics.

The SVARs that we test come in four varieties, spanning from very unrestricted to heavily

restricted. The Type 1 SVAR has imposed on it only the restriction that supply curve be

upward sloping, while the Type 4 SVAR has the added restrictions that the demand curve

be downward sloping, the elasticity of oil supply be bounded from above and below, and

the IRFs be constrained to mimic the true IRFs up to three periods out. We expect our

measures S̄ and D̄KL to show that the as the models become more restricted, in general, the

structural shocks move closer to representing the true unobserved shocks behind the data

generating process.

Then within each type of SVAR (i.e. 1,2,3 and 4), we vary the upper bound on the price

elasticity of oil supply over a broad range to see if our measures S̄ and D̄KL can be used

to glean information about the true elasticity of oil supply underlying the simulated data.

E�ectively, we perform a simple optimization by grid search. We vary the upper bound

over a broad range of values and select the bound that minimizes D̄KL and 1/S̄. We then

plug in the optimal upper bound into baseline model and, when the optimal upper bound

is imposed, the model correctly estimates the mean of the elasticity for the underlying data

process.

The data generating process is calibrated to oil price and oil production data, {qot, rpot}Tt=1,

and the details on the data transformation to arrive at the �nal data set are presented in

the Appendix. We use a standard framework for estimating the Bayesian VAR by assum-

ing that the reduced form parameters, B and Σ|B, are distributed multivariate Normal and

Inverse-Wishart, respectively. Using this parameterization is particularly convenient because

the priors are conjugate, so the posterior distribution is immediately available for sampling

without the need for extra computation. We follow Inoue and Kilian (2013) in de�ning our

initial values for the prior distribution's hyper-parameters (v0, S0, B0, N0).

vec(B)|Σ ∼ N
(
vec(B0),Σ⊗N−1

0

)
(17)

Σ ∼ IWn (v0S0, v0) (18)
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Here, N0 is np× np, S0 is n× n and v0 > 0. The posterior is

vec(B)|Σ ∼ N
(
vec(B̄T ),Σ⊗N−1

T

)
(19)

Σ ∼ IWn (vTST , vT ) (20)

where vT = T + v0, NT = N0 + X ′X, B̄T = N−1
T (N0B̄0 + X ′XB̂), St = S0v0/vT + T

vt
Σ̂ +

1
vT

(B̂ − B̄0)′N0N
−1
T X ′X(B̂ − B̄0), B̂ = (X ′X)−1X ′Y and Σ̂ = (Y −XB̂)′(Y −XB̂)/T .

Upon estimating the parameters of the data, we then de�ne a set of structural coe�cients

A?0, being sure that they satis�es the expected features of a structural model for the oil

market. Most importantly, we impose that A?0 satis�es sign restrictions on all of its elements.

For example, α?11 is the element in the �rst row and �rst column of (A?0)−1 and it should be

negative because a positive supply shock corresponds to a decrease in oil supply. The set of

restrictions on (A?0)−1 we impose are,

a11 < 0 , a12 > 0 , a21 > 0 , a22 > 0.

The simulated set of data, ỹT looks very similar to the real data, yT,?, and we estimate the

model parameters using expressions in (17) and (19) on that data. It closely resembles the

original estimated model θ? that we used to create it, as expected.

Our main results for each of the baseline models, Type 1 through Type 4, are presented

in Table 1. The measures S̄ and D̄KL are in the far right columns of the table, but equally

importantly, three other measures are reported in the center of the table that track how

closely the model mimics the true data generating process. The table shows that all these

measures move together and align with expectations. The �rst column reported in the table

is MSE? = trace(ε̃T
′
ε̃T )/T , or the mean sum of squared errors that gives a measure of

squared distance between the estimated and true structural shocks. The measure e − e∗ =

α21/α22−α?21/α
?
22 is a simple average distance between the estimated and the true elasticity of

oil supply. Finally, the most general measure is ||A−A?||, measuring the euclidean distance

between the estimated and true elements of the short-term shock impact matrix, A−1
0 . This

value is calculated as || (A0)−1− (A?0)−1 ||. Measures DKL and S are calculated according to

(9) and (16).

There are two main takeaways from this simulation. First, restrictions generally help the

baseline model move closer to the target model, and this is clearly expressed in the measures

S̄ and D̄KL, as well in the �rst three columns of 1. Looking to that table, as we move

down each column, for a given elasticity bound the measures in all �ve columns indicate less

distance from the DGP. This is visually expressed Figure 1 that likewise shows a decreasing

measure of DKL for each baseline model across the full grid of elasticity bounds. Even so,
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Figure 1

Simulated Results for DKL as the Number of
Model Restrictions Increase

while this is generally true, it is not always true. Notice that the excessively tight elasticity

bounds for the Type 4 Baseline cause lower performance than the Type 3 Baseline for the

same bound. In this case, the added restrictions for Type 4 compounded with the tighter

bounds. Second, for each baseline model, we can �nd a set of parameters that minimizes

our measures S and D, and that set of parameters will also center the baselines posterior

distribution over the true DGP's parameters. Figure 2 plots the DKL measure alongside

other unobservable measures the span of elasticity bounds, and it clearly shows that all

measures track each other closely.

7 Applying the Measures to the Oil Market

The two measures are calculated across �ve di�erent well-cited SVAR restrictions schemes

that span the varieties of approaches currently being used to identify structural shocks in

the oil market. We choose these papers, in part, to provide metrics for researchers trying

to decide which to use for empirical applications. For each restriction scheme, or baseline

13



Figure 2

Simulated Results for DKL versus Other Measures of Distance from the DGP

14



Table 1: Simulated Results of Unobservable and Observable Measures

Unobservable Measures Observable Measures

Model + Restrictions
Elasticity
Bound

MSE∗ e− e∗ ||A− A∗|| S DKL

Type 1: Supply . 1.19 5.84 1.92 11.37 27.47

Type 2:
Supply + Elasticity Bounds

Tight 1.29 7.05 2.22 9.26 39.69
Medium 1.19 4.22 1.94 11.41 27.3
Loose 1.19 4.84 1.92 11.37 27.44

Type 3:
Supply + Elasticity
Bounds + Demand

Tight 0.47 0.17 1.29 10.68 32.89
Medium 0.27 0.8 0.76 12.53 23.69
Loose 0.27 1.96 0.78 12.41 24.07

Type 4:
Supply + Elasticity

Bounds + Demand + IRFs

Tight 0.39 0.23 1.15 8.97 36.42
Medium 0.17 1.12 0.52 13.73 20.08
Loose 0.19 2.69 0.59 13.39 21.03

model, we apply the same target set of narrative restrictions against which we test the

baseline model's performance. In this paper, we set nine narrative restrictions that span

three distinct events across fourteen years. The �rst event is the Lehman Brother's collapse

in September of 2008 that marks the beginning of the Global Financial Crisis. The second

event is the start of the Libyan Civil War that started in late March of 2011. Finally, we

include a set of restrictions marking the start of the COVID19 pandemic in February of 2020.

The Appendix gives a full accounting of the target restrictions.

There are other narrative restrictions that reasonable people may feel are more important

to include, and there is no theoretical reason that nine is the right number of restrictions.

In the practical application for this paper, however, nine seems to provide enough bite that

it avoids having too many 0-pass rates or perfect 1-pass rates. For this application, we feel

our target restrictions accomplish the goal; they bite enough to showcase how informative

our measures can be.

To give a sense of how much our measures can change depending on the underlying

data set, the baseline SVARs are estimated on four samples of data. All data sets begin in

1973.01, but the samples vary by length and end in one of four di�erent periods: August

of 2008, January of 2011, January of 2020 and January of 2022. Breaking the data sets up

into smaller samples a�ords us an opportunity to see the models' relative performance with

targets that are outside of the sample on which the baseline model was estimated. The idea

is to mimic as closely as possible out of sample SVAR performance. Given how closely our

measures are correlated with the MSE? from the simulations in Section 6, we believe this
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exercise is a signi�cant contribution.

Of the �ve SVARs that we investigate, Antolín-Díaz and Rubio-Ramírez (2018) seems

to perform the best by our measures. We therefore dig deeper in the results and perform

a grid search for the upper bound on the price elasticity of supply that minimizes 1/S̄

and D̄KL using our set of nine restrictions as the target. The exercise is informative. The

current upper bound imposed in the paper, 0.0258 seems too restrictive, so we re-estimate

AR18 with the new upper bound. We then apply the re-estimated model to performing a

hypothetical scenario: what happens if we have another COVID19 Pandemic outbreak like

we did in February of 2020?. We compare the results for the original and revised AR18

model to show that the relaxed bound has a modest but reasonable impact on the model's

structural scenario analysis and conditional forecasting.

• Kilian (2009) (K9): The authors use a recursive identi�cation scheme on a three

variable VAR, yt = [qt, reat, rpot, invt]. This restriction scheme imposes a vertical

short-run supply curve, that is, demand cannot in�uence supply in the short run.

• Kilian and Murphy (2012) (KM12): We impose the sign restrictions as presented

in Table 3, together with an upper bound on the price elasticity of oil supply of 0.0258,

and a lower bound on element (2,3) of Table 3. This paper is often cited and updated

(e.g. Antolín-Díaz and Rubio-Ramírez (2018),Baumeister and Hamilton (2019),Zhou

(2020)), so replication code is readily available.

• Kilian and Murphy (2014) (KM14): We impose the sign restrictions following

the original paper as laid out in Table 4 below. The authors present several sets of

restrictions that can be imposed on the model. We impose only the restrictions that

coincide with Kilian and Murphy (2012), namely that the price elasticity of oil supply

of 0.0258 and a lower bound on element (2,3) of 4 of -1.5.

• Baumeister and Hamilton (2019) (BH19) impose priors directly on the elements

of A0 rather than restrictions on A
−1
0 . We use their data set and the directions to update

it are available publically: https://sites.google.com/site/cjsbaumeister/research

• Antolín-Díaz and Rubio-Ramírez (2018) (AR18): Their baseline model has four

variables: yt = [qt, reat, rpot, invt], and follows the design of (Kilian & Murphy, 2012)

except for one di�erence: the authors require that aggregate demand was the least

important contributing factor to the spike in the real oil price for August of 1990.

Similar to (Kilian, 2009) and (Kilian & Murphy, 2012), we start the model with �at

priors (i.e. Je�rey's ) and update their data set so that it runs from January of 1973

until February 2022.
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Table 2: Measures Applied to Five Identi�cation Schemes*

Lehman Libya Covid All Events

Measure Sample Model Jan73-Aug08 Jan73-Jan11 Jan73-Jan20 Jan73-Jan22

S

In

K9 100 0 47.4 0.2
KM12 100 96.1 100 96.1
KM14 71.9 31.3 90.6 28.1
AR18 100 98.7 97.3 96.8
BH19 99.2 100 2 2.2

Out

K9 100 0 75 0
KM12 100 84.6 100 44.2
KM14 64.5 25.8 93.5 6.5
AR18 100 88 100 52.4
BH19 70.8 100 17.8 31.4

DK

In

K9 0.91 . 1.77 .
KM12 0.87 0.84 0.86 2.55
KM14 1.97 4.27 1.79 13.67
AR18 0.92 0.95 0.92 2.79
BH19 0.85 1.2 0.87 2.97

Out

K9 0.82 . 1 .
KM12 0.86 1.01 0.81 2.74
KM14 2.14 7.66 1.84 50.09
AR18 0.85 0.96 0.83 2.56
BH19 0.81 1.41 0.82 2.98

*K9 = Killian (2009); AR18 = Antolin-Diaz et al (2018); KM12 = Kilian & Mur-
phey (2012); KM14 = Kilian and Murphey (2013); BH19 = Baumeister and Hamil-
ton (2019).

There are a few results to highlight from Table 2. First, there are clearly drawbacks to

using S̄, as the measure is more often 100 or 0, whereas D̄KL is never identical across models.

Second, the recursive restriction used in K9 performs exceptionally poorly. The recursive

identi�cation scheme used in that paper are no longer common for oil market vars, and the

measures we calculate here provide support for that. Finally, the model with the lowest S̄

and D̄KL measures is AR18. The next section will perform more analysis on this model

to see if our measures can be further reduced by adjusting the bounds on the oil supply

elasticity.
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7.1 On the Upper Elasticity Bound

For AR18, varying the elasticity bound from 20% below to 100% percent above the current

threshold revealed that at a higher bound, the model performs better by our measures.

Relaxing the upper bound to 80% percent above its current level, or 0.0405, seems to improve

the model the most. In Figure 3 we plot the D̄KL and S̄ measures for each elasticity bound

on our grid and it reaches local minimum of DKL = 2.78 at the baseline value of 0.0258, but

a much lower minimum at another point with a D̄KL = 2.31, roughly a 20% improvement.

The bound of 0.0258 was �rst proposed by Kilian and Murphy (2012), and recently tested

for robustness by Zhou (2020). Remarkably, Zhou (2020) also concludes that the one-month

elasticity for oil supply should be increased to 0.04 but for very di�erent reasons. Citing data

from oil producers in North Dakota in Bjørnland et al. (2021), Zhou (2020) argues that the

largest credible micro-econometric estimate using reduced form regressions for this elasticity

is 0.035. According to Zhou (2020), the round number of 0.04 seems like a reasonable upper

limit. The results in this paper support that conclusion although they were achieved in a

very di�erent fashion.

We then perform an informal experiment to test how di�erent the model is under 0.0405

versus 0.02058. We run a hypothetical scenario: what happens if we have another Covid19

outbreak like we did in February and March of 2020? We use the approach in (Baumeister

& Kilian, 2014) and pull the aggregate demand shock from that period in 2020 and apply

it to an unconditional forecast of the oil price going forward 18 months. The results of the

scenario's impact on the level of the oil price are presented in the top of Figure 4. The

impact is modest. With our optimized AR18 model, the scenario predicts an extra �ve point

drop in the oil price relative to the baseline. This is not dramatic di�erence, but we see the

change as reasonable.

8 Conclusions

When running hypothetical scenarios, the possible outcomes can vary widely by identi�cation

scheme and assumption about the reasonable ranges of parameters. In this paper we develop

two measures to guide the implementation of SVAR restrictions. We then run a simple

simulation exercise to show that in fact both measures move us closer to the true parameters

of the underlying data process. In simulations, maximizing the value of statistic will (1)

minimizes the distance between the model's �tted parameters and the true ones driving the

data and (2) minimize the squared distance between the model's structural shocks and the

true ones. We then apply our new measures to several well known SVAR models of the
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Figure 3

Optimizing Elasticity Bounds for AR18
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Figure 4

Covid19 Scenario: Applying New Elasticity Bounds in AR18

Optimizing Elasticity Bounds for AR18

Optimizing Elasticity Bounds for AR18
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Table 3: Sign Restrictions on 3-Variable VAR

Structural Shocks

Variables Oil Supply Aggregate Demand Oil-Speci�c Demand

Oil Production - + +
Real Economic Activity - + -

Real Oil Price + + +

oil market and we optimize over the bounds on the price elasticity of oil supply for one of

the models, Antolín-Díaz and Rubio-Ramírez (2018) (AR18). The optimal bound implied by

our new measures coincides almost exactly with recent microeconomics estimates from North

Dakota. We re-run AR18 to investigate how much the model's predictions have changed as

a result of the increased bound, if at all. Speci�cally, we generate a hypothetical scenario:

what if COVID19 breaks out again?, and we compare the hypothetical forecasts generated by

the original AR18, and the one with the increased bound. The results are close to each other

although our revised model predicts an extra 5% drop in the oil price beyond the original

model.

A Appendix

A.1 Model Replications

Description of standard approach to applying sign restrictions, e.g. Uhlig (2017)

Decompose the reduced form covariance matrix Σ into the pair of matrices LL′ using

Cholesky factorization. If structural parameters A0 = LR, then as long as RR′ = I, a

cloud of acceptable A-matrices can be generated and �ltered until a suitable number is

reached that satisfy the all the sign restrictions. Imposing restrictions on the elements in the

A0-matrix will greatly sharpen the identi�cation around the `true' data generating process

by discarding the models that are counterfactual. There is some debate about the best way

to draw elements for the R matrix. In most applications, the elements of R are drawn from

a normal distribution and then divided by the sum of the draws to normalized R to have

unit length. This method is known as drawing from the Haar prior (Haar, 1933).

A.2 Description of the Dataset

• Brent Oil Price: Daily Spot Oil Price data averaged over the month from Feb1989

until Jan2022. Dates before Feb1989 until Jan1973 were backwards-forecasted using the
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Table 4: Sign Restrictions on 4-Variable VAR

Structural Shocks

Variables Oil Supply Aggregate Demand Oil Demand Speculative Demand

Oil Production - . + +
Real Economic Activity - . + -

Real Oil Price + . + +
Inventories - . - +

WTI oil price and other correlates. More details are available at https://www.eia.gov/.

• CPI: Monthly Consumer Price In�ation, Jan1953 until Jan2022. Provided by FRED

of the US Federal Reserve.

• Real Acquisition Cost for Domestic Fuel Importers. This data can be downloaded from

https://www.eia.gov/.

• Real Economic Activity: We use the index developed in Kilian (2009) and updated

in Kilian (2019) as an indicator for global economic activity. Data is available here:

https://www.dallasfed.org/research/igrea.

• Fuel Inventories: data on this series is available from https://www.eia.gov/.

• Global Oil Production: data on this series is available from https://www.eia.gov/.

A.3 Connection to Likelihood Function

The numerator and denominator of (11) are not common objects in Bayesian VARs, but

we show here that they are proportional to the likelihood of the data. To see this, for

example, start with the denominator in Equation (11), π
(
εT |xT , θ

)
and substitute out εT

using g(yt;xt, θ)

π
(
εT |xT , θ

)
=

s=T∏
s=1

π
(
εs|xT , θ

)
=

s=T∏
s=1

π (g(yt;xt, θ)|xt, θ)

=
s=T∏
s=1

π (yt|xt, θ)
d

dy
g(yt;xt, θ)
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and we arrive at the last line from the chain rule. We can then use (3) to show that
d
dy
g(yt;xt, θ) = |Σ|1/2. In total we have

π
(
εT |xT , θ

)
= π

(
yT |θ

)
|Σ|1/2

The right hand side is the likelihood function of the data multiplied by a constant.

A.4 Target Narrative Restrictions for Section 7 Application

Narrative Test Restriction 1: �Lehman"
Lehman Brothers Collapse from September 2008 - December 2008

1. Economic Activity Shock is the largest contributor to Aggregate Demand.

2. Economic Activity Shock is negative: ut,rea < 0

3. Oil Supply Shock is not the largest contributor to Real Oil Price.

4. Oil Supply Shock is not the largest contributor to Aggregate Demand.

Narrative Test Restriction 2: �Libya"
Start of the Libyan Civil War from February 2011 - March 2011

1. Oil Supply Shock is the largest contributor to Oil Supply.

2. Oil Supply Shock is positive: ut,q > 0

3. Economic Activity Shock is not the largest contributor to Real Oil Price.

4. Economic Activity Shock is not the largest contributor to Oil Supply.

Narrative Test Restriction 3: �Covid19"
Covid19 Pandemic Outbreak from February 2020 and March 2020

1. Economic Activity Shock is the largest contributor to Aggregate Demand.

2. Economic Activity Shock is negative: ut,rea < 0

3. Oil Supply Shock is not the largest contributor to Real Oil Price.

4. Oil Supply Shock is not the largest contributor to Aggregate Demand.
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